E-mail: zcsteel@gmail.com  

Salt Spray Test For color coated steel coils

Source: Zhicheng SteelDate: 2017-10-17

The salt spray test is a standardized and popular corrosion test method, used to check corrosion resistance of color coated steel coil surface coatings. Usually, the materials to be tested are metallic and finished with a surface coating which is intended to provide a degree of corrosion protection to the underlying metal. Salt spray testing is an accelerated corrosion test that produces a corrosive attack to coated samples in order to evaluate (mostly comparatively) the suitability of the coating for use as a protective finish. The appearance of corrosion products (rust) is evaluated after a pre-determined period of time. Test duration depends on the corrosion resistance of the coating; generally, the more corrosion resistant the coating is, the longer the period of testing before the appearance of corrosion/ rust. The salt spray test is one of the most widespread and long established corrosion tests. ASTM B117 was the first internationally recognized salt spray standard, originally published in 1939. Other important relevant standards are ISO9227, JIS Z 2371 and ASTM G85.

Salt spray testing is popular because it is relatively inexpensive, quick, well standardized, and reasonably repeatable. Although there may be a weak correlation between the duration in salt spray test and the expected life of a coating in certain coatings such as hot dip galvanized steel, this test has gained worldwide popularity due to low cost and quick results. Most Salt Spray Chambers today are being used NOT to predict the corrosion resistance of a coating, but to maintain coating processes such as pre-treatment and painting, electroplating, galvanizing, and the like, on a comparative basis. For example, pre-treated + painted components must pass 96 hours Neutral Salt Spray, to be accepted for production. Failure to meet this requirement implies instability in the chemical process of the pre-treatment, or the paint quality, which must be addressed immediately, so that the upcoming batches are of the desired quality. The longer the accelerated corrosion test, the longer the process remains out of control, and larger is the loss in the form of non-conforming batches. The principle application of the salt spray test is therefore enabling quick comparisons to be made between actual and expected corrosion resistance. Most commonly, the time taken for oxides to appear on the samples under test is compared to expectations, to determine whether the test is passed or failed. For this reason the salt spray test is most often deployed in a quality audit role, where, for example, it can be used to check the effectiveness of a production process, such as the surface coating of a metallic part. The salt spray test has little application in predicting how materials or surface coatings will resist corrosion in the real-world, because it does not create, replicate or accelerate real-world corrosive conditions. Cyclic corrosion testing is better suited to this.
The apparatus for testing consists of a closed testing cabinet/chamber, where a salt water (5% NaCl) solution is atomized by means of spray nozzle(s) using pressurized air. This produces a corrosive environment of dense salt water fog (also referred to as a mist or spray) in the chamber, so that test samples exposed to this environment are subjected to severely corrosive conditions. Chamber volumes vary from supplier to supplier. If there is a minimum volume required by a particular salt spray test standard, this will be clearly stated and should be complied with. There is a general historical consensus that larger chambers can provide a more homogeneous testing environment.

Variations to the salt spray test solutions depend upon the materials to be tested. The most common test for steel based materials is the Neutral Salt Spray test (often abbreviated to NSS) which reflects the fact that this type of test solution is prepared to a neutral pH of 6.5 to 7.2. Results are represented generally as testing hours in NSS without appearance of corrosion products (e.g. 720 h in NSS according to ISO 9227). Other test solutions have other chemicals added including acetic acid (often abbreviated to ASS) and acetic acid with copper chloride (often abbreviated to CASS) each one chosen for the evaluation of decorative coatings, such as electroplated copper-nickel-chromium, electroplated copper-nickel or anodized aluminum. These acidified test solutions generally have a pH of 3.1 to 3.3

Some sources do not recommend using ASS or CASS test cabinets interchangeably for NSS tests, due to the risk of cross-contamination, it is claimed that a thorough cleaning of the cabinet after CASS test is very difficult. ASTM does not address this issue, but ISO 9227 does not recommend it and if it is to be done, advocates a thorough cleaning.

Although the majority of salt spray tests are continuous, i.e.; the samples under test are exposed to the continuous generation of salt fog for the entire duration of the test, a few do not require such exposure. Such tests are commonly referred to as modified salt spray tests. ASTM G85 is an example of a test standard which contains several modified salt spray tests which are variations to the basic salt spray test

> */